If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+360x=0
a = 10; b = 360; c = 0;
Δ = b2-4ac
Δ = 3602-4·10·0
Δ = 129600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{129600}=360$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(360)-360}{2*10}=\frac{-720}{20} =-36 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(360)+360}{2*10}=\frac{0}{20} =0 $
| 2w+3w=60 | | -2(3y-1)+4y=3(1-5y) | | 24=-6a-6a | | 3d+18=49-4d | | 4(n-3)+2n=6n-6(8-n) | | 3p+4=8p-5 | | 2x=59x/18 | | 3300×e-5=110000000 | | X+5=13x18 | | 9=2+w | | 4(20x–19)=–16x+20 | | 6x-+3=2x-12 | | 5(k+80)=-20 | | 1+q=13-2q | | 12x-15=6+8x | | u+2.93=4.39 | | -2(4x-5)+2+4=26 | | 4x-12=-5+15 | | -8+4x=-24+2x | | k/3-(-59)=68 | | 2x+1-6=13 | | (1/3)c-7=1 | | 2x-2(-3x+3)=52 | | 95+85+x=360 | | 7-12x=103 | | 3p^2+7=10 | | 60+2x=96 | | 13=8x+9+5x-8 | | I=6k+81 | | -2x^2-4x-2=-18 | | 3x+59=2x+36 | | 7x+4+2=9x-32+1 |